Namespaces

Types

Type Constants

Namespace MathNet.Numerics

Methods

Fields

Public instance methods

bool Equals(object obj)

Parameters
return bool
object obj

int GetHashCode()

Parameters
return int

Type GetType()

Parameters
return Type

string ToString()

Parameters
return string

Public fields

double E

e
return double

double Log2E

log[2](e)
return double

double Log10E

log[10](e)
return double

double Ln2

log[e](2)
return double

double Ln10

log[e](10)
return double

double LnPi

log[e](pi)
return double

double InvE

1/e
return double

double SqrtE

sqrt(e)
return double

double Sqrt2

sqrt(2)
return double

double Sqrt1_2

sqrt(1/2) = 1/sqrt(2) = sqrt(2)/2
return double

double HalfSqrt3

sqrt(3)/2
return double

double Pi

pi
return double

double Pi_2

pi/2
return double

double Pi_4

pi/4
return double

double SqrtPi

sqrt(pi)
return double

double Sqrt2Pi

sqrt(2pi)
return double

double InvPi

1/pi
return double

double TwoInvPi

2/pi
return double

double InvSqrtPi

1/sqrt(pi)
return double

double InvSqrt2Pi

1/sqrt(2pi)
return double

double TwoInvSqrtPi

2/sqrt(pi)
return double

double Degree

(pi)/180 - factor to convert from Degree (deg) to Radians (rad).
return double

double Grad

(pi)/200 - factor to convert from NewGrad (grad) to Radians (rad).
return double

double PowerDecibel

ln(10)/20 - factor to convert from Power Decibel (dB) to Neper (Np). Use this version when the Decibel represent a power gain but the compared values are not powers (e.g. amplitude, current, voltage).
return double

double NeutralDecibel

ln(10)/10 - factor to convert from Neutral Decibel (dB) to Neper (Np). Use this version when either both or neither of the Decibel and the compared values represent powers.
return double

double Catalan

Catalan constant
Sum(k=0 -> inf){ (-1)^k/(2*k + 1)2 }
return double

double EulerGamma

The Euler-Mascheroni constant
lim(n -> inf){ Sum(k=1 -> n) { 1/k - log(n) } }
return double

double GoldenRatio

(1+sqrt(5))/2
return double

double Glaisher

Glaisher Constant
e^(1/12 - Zeta(-1))
return double

double Khinchin

Khinchin constant
prod(k=1 -> inf){1+1/(k*(k+2))^log(k,2)}
return double