## Types

Type Constants

Namespace MathNet.Numerics

### Public instance methods

#### bool Equals(object obj)

 return bool object obj

#### int GetHashCode()

 return int

#### Type GetType()

 return Type

#### string ToString()

 return string

### Public fields

#### double E

e
 return double

#### double Log2E

log[2](e)
 return double

#### double Log10E

log[10](e)
 return double

#### double Ln2

log[e](2)
 return double

#### double Ln10

log[e](10)
 return double

#### double LnPi

log[e](pi)
 return double

#### double InvE

1/e
 return double

#### double SqrtE

sqrt(e)
 return double

#### double Sqrt2

sqrt(2)
 return double

#### double Sqrt1_2

sqrt(1/2) = 1/sqrt(2) = sqrt(2)/2
 return double

#### double HalfSqrt3

sqrt(3)/2
 return double

#### double Pi

pi
 return double

#### double Pi_2

pi/2
 return double

#### double Pi_4

pi/4
 return double

#### double SqrtPi

sqrt(pi)
 return double

#### double Sqrt2Pi

sqrt(2pi)
 return double

#### double InvPi

1/pi
 return double

#### double TwoInvPi

2/pi
 return double

#### double InvSqrtPi

1/sqrt(pi)
 return double

#### double InvSqrt2Pi

1/sqrt(2pi)
 return double

#### double TwoInvSqrtPi

2/sqrt(pi)
 return double

#### double Degree

 return double

 return double

#### double PowerDecibel

ln(10)/20 - factor to convert from Power Decibel (dB) to Neper (Np). Use this version when the Decibel represent a power gain but the compared values are not powers (e.g. amplitude, current, voltage).
 return double

#### double NeutralDecibel

ln(10)/10 - factor to convert from Neutral Decibel (dB) to Neper (Np). Use this version when either both or neither of the Decibel and the compared values represent powers.
 return double

#### double Catalan

Catalan constant
Sum(k=0 -> inf){ (-1)^k/(2*k + 1)2 }
 return double

#### double EulerGamma

The Euler-Mascheroni constant
lim(n -> inf){ Sum(k=1 -> n) { 1/k - log(n) } }
 return double

#### double GoldenRatio

(1+sqrt(5))/2
 return double

#### double Glaisher

Glaisher Constant
e^(1/12 - Zeta(-1))
 return double

#### double Khinchin

Khinchin constant
prod(k=1 -> inf){1+1/(k*(k+2))^log(k,2)}
 return double